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March 8th 2014:   Impact of wind 
and solar on net-load at CAISO

Ramp limitations cause price-spikes

Price spike due to high net-load ramping
need when solar production ramped out

Negative prices due to high
mid-day solar production
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Ancillary Service – free, like Digital Music
 



Proposal: Each class of DR (and other) resources will have its own
bandwidth of service, based on QoS constraints and costs.

–Ancillary Service as free as Digital Music 
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ISOs need help:... ramp capability shortages could result in a single, five-minute

dispatch interval or multiple consecutive dispatch intervals during which the price

of energy can increase significantly due to scarcity pricing, even if the event does

not present a significant reliability risk http://tinyurl.com/FERC-ER14-2156-000
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–Ancillary Service as free as Digital Music 

Frequency Decomposition 
Taming the Duck 

One Day at CAISO 2020

ISO/RTOs are seeking ramping products
to address engineering challenges, and
to avoid scarcity prices
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–Ancillary Service as free as Digital Music 

Frequency Decomposition 
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–Ancillary Service as free as Digital Music 
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Demand Dispatch: Power consumption from loads varies automatically
and continuously to provide service to the grid, without impacting QoS to
the consumer
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Demand Dispatch: achieve these goals simultaneously
from flexible loads, through distributed control

Demand Dispatch 
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Responsive Regulation and desired QoS 
– A partial list of the needs of the grid operator, and the consumer 
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Cost effective? 
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Prefilter and decision rules designed to respect needs of load and grid

Randomized policies required for finite-state loads

Demand Dispatch 

General Principles for Design
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Questions:

• How to design Pζ? • How to analyze aggregate of similar loads?
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Output (mean power): yt =
N
x

µt(x)U(x)

Nonlinear state space model Linearization useful for control design

Demand Dispatch 

How to analyze aggregate? 
Mean field model, R. Malhame et. al. 1984 – 

State process: 

NN1 
µt(x) ≈ I{Xi = x}, x ∈ X 

N t 
i=1 

Evolution: µt+1 = µtPζt 
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Demand Dispatch 

Nonlinear state space model: µt+1 = µtPζt , yt =  µt, U 
Linearization useful for control design 
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Demand Dispatch 

Control Architecture 
Frequency Allocation for Demand Dispatch 
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Distributed control design includes local filter:

Filtering at each load to create homogeneous response

Aggregate behaves as a perfect battery in a limited bandwidth

By design: Balancing authority requires only grid-level information.
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Distributed control design includes local filter: 

Filtering at each load to create homogeneous response 

Aggregate behaves as a perfect battery in a limited bandwidth 

By design: Balancing authority requires only grid-level information. 

Two warnings: 
High frequency AS (primary control) is not included in these studies 
Phase lag and delay for low frequency AS may induce cost because of 
additional AS required 
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Demand Dispatch 

Information Architecture: ζt = f(?) 
Analysis: Classical control design 

Filtering at each load to create homogeneous response 

Aggregate behaves as a perfect battery in a limited bandwidth
 

By design: Balancing authority requires only grid-level information.
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Conclusions 

Conclusions 
The virtual storage capacity from demand dispatch is enormous 

With appropriate filtering and local control, DD can provide excellent 
ancillary service, even without two-way communication. 

Bandwidth ranges from AGC to RTM! 
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Not so fast! Zero marginal cost �= free

Conclusions

Ancillary Service can be as free as Digital Music

However, as often happens in power systems, as well as music,
there is a huge sunk-cost

Challenge: economic theory for the music industry

FERC Order 755 is a nice start.

Will the Supreme Court give us a new and improved
FERC Order 745 in the spring?

Conclusions 

Conclusions 
The virtual storage capacity from demand dispatch is enormous 

These resources are free! Fans, Irrigation, pool pumps, ... 
Demand-side resources could replace our real-time markets! 
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DD can replace the RTM
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Conclusions 

Conclusions
 

Thank You! 
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